THE ATOM, A BOX OF ELECTRONS An atom consists of a nucleus that creates a sort of electric box around it containing electrons. These quantum particles can only take a few specific shapes, called orbitals, depending on the shape of the 'box' itself. WWW.QUANTUM MADESIMPLE.COM # WWW.QUANTUM MADESIMPLE.COM # BOSE-EINSTEIN CONDENSATE At very low temperatures atoms can sometimes form a single collective huge quantum wave. WWW. QUANTUM MADESIMPLE .COM #### **PHOTOEMISSION** When photons are directed at a metal they can eject electrons from the surface of this metal. We then observe these electrons to create a map of their momentum, which helps us understand the properties of matter. ### STATE SUPERPOSITION Some quantum systems such as atoms, photons or spins can be in two simultaneous different states. But this superposition is very frail and will stop as soon as the particle interacts with its environment. # WWW. QUANTUM MADESIMPLE.COM #### WWW. QUANTUM MADESIMPLE .COM ## PUMP-PROBE TECHNIQUE With ultrashort laser pulses we are able to observe ultrafast phenomena inside matter, such as the movement of atoms or electron excitation. #### **GRAPHENE** Graphene consists of a single layer of carbon atoms. Neither entirely metallic nor entirely insulating, its electrons are characterized by Dirac cones that lead to relativistic behaviors similar to the behavior of light. #### WWW.QUANTUM MADESIMPLE.COM #### WWW.QUANTUM MADESIMPLE.COM #### CRYSTALLOGRAPHY When you shed an X-ray beam on a solid, the diffracted light forms a pattern called reciprocal lattice. This lattice is the key to determining the arrangement of atoms inside matter.